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1. Introduction

The distribution of extremes is of interest to many disciplines

including

• Economics and Finance: VAR calculations, extreme returns,

insurance loss distributions, etc

• Environmental Sciences: maximum daily rainfall, minimum

hydro inflows, etc

among many others.

Focus here is on the block maximum or maximum observation in

a sample (e.g. annual maximum daily rainfall for Wellington).



For an iid sequence X1, . . . , Xn, classical Extreme Value Theory
(EVT) shows that, when suitably normalised,

Mn = max(X1, . . . , Xn)

has an asymptotic Generalised Extreme Value (GEV) distribution

F (x|θ) =

 exp{−[1− κx−βα ]
1
κ} (κ 6= 0)

exp{− exp[−x−βα ]} (κ = 0)

where κ(x− β) < α, α > 0 and θ = (β, α, κ).

Notes:

• Result holds under more general circumstances;

• GEV distribution fitted more widely in practice;

• Heavy tailed when κ < 0 (Frechet), light tailed when κ = 0
(Gumbel) or κ > 0 (Weibull).



The GEV parameters are commonly fitted by

• maximum likelihood (ML) (Prescott and Walden,1980) which
is asymptotically efficient if κ < 0.5 (Smith, 1985);

• method of L-moments (Hosking, 1990) giving consistent,
large-sample Gaussian estimates if κ > −0.5 (finite variance).

However

• method of moments methods reported to be more accurate
than ML for small samples, especially for fitted quantiles;

• ML-based methods show improved small-sample properties
when parameter constraints are imposed;

where the latter include Bayesian methods (Martins and Ste-
dinger, 2000), penalised ML (Coles and Dixon, 1999) and mo-
ment constraints (Morrison and Smith, 2002).



2. GEV estimation using mixed methods

The log-likelihood of a GEV random sample is

lnL(θ) = −n lnα−
n∑
i=1

(1−κ
Xi − β
α

)
1
κ + (

1

κ
−1)

n∑
i=1

ln(1−κ
Xi − β
α

)

where

α > 0, κ(Xi − β) < α (i = 1, . . . , n).

Further assume

−0.5 < κ < 0.5

to satisfy finite variance, ML regularity conditions.

Suppose now that θ is estimated by a mixture of two methods;

maximum likelihood and method of moments.



Method M1

Suppose κ is estimated by maximising lnL(θ) with α and β given

as functions of κ by the L-moments

λ1 = E(X1) = β +
α

κ
(1− Γ(1 + κ))

λ2 = 1
2E(|X1 −X2|) =

α

κ
(1− 2−κ)Γ(1 + κ)

where λ1, λ2 are estimated by

λ̂1 =
1

n

n∑
i=1

Xi, λ̂2 =
1

n(n− 1)

∑
i<j

|Xi −Xj|.

This mixed estimation method was first proposed by Morrison

and Smith (2002).



Notes:

• The two L-moment constraints and λ3 = κ specify a 1-1

mapping between the parameters θ and λ = (λ1, λ2, λ3).

• Approach can be generalised to other moment constraints

and associated 1-1 mappings with

λ̂1 = λ̂1(X), λ̂2 = λ̂2(X), λ̂3 = arg max
λ3

lnL(λ̂1, λ̂2, λ3)

where λ̂1, λ̂2 are known unbiased estimators of λ1, λ2 and

θ̂ = θ(λ̂) where θ = θ(λ) specifies the 1-1 mapping.

• Method can also be extended to the case of only one moment

constraint with the remaining parameters estimated by ML.



Asymptotic properties of the estimates

If −0.5 < κ < 0.5 and n is large, then θ̂ = θ(λ̂) is consistent and

√
n(θ̂ − θ) ∼ N(0, JTV J)

where

J = ∂θT/∂λ, V = BCBT ,

C =


C11 C12 0
C21 C22 0

0 0 I
(λ)
33

 , B−1 =


1 0 0
0 1 0

I
(λ)
31 I

(λ)
32 I

(λ)
33


with

I(λ) = JI(θ)JT , Cij = lim
n→∞n cov(λ̂i, λ̂j)

and I(θ) is the information matrix of the GEV distribution.



Notes:

• Consistency of θ̂ follows from Smith (1985).

• Analytic form for I(θ) given by Prescott and Walden (1980).

• Analytic expressions for the Cij follow from standard theory

of L-moments (Hosking, 1990) and U-statistics (Lee, 1990).

• For Method M1, an alternative formula for C22 was derived

using the symmetric Beta distribution rather than the hyper-

geometric function.

• Mathematics straightforward, but demanding. Theory checked

by simulation.



Other examples of mixed GEV estimation methods

Method M2: Consider the mapping

λ1 = β +
α

κ
(1− Γ(1 + κ)), λ2 = α, λ3 = κ

with λ̂1 given by the sample mean and λ2, λ3 estimated by con-

strained ML.

Method M3: Consider the mapping

λ1 = β +
α

κ
(1− (ln 2)κ), λ2 =

α

κ
(1− 2−κ)Γ(1 + κ), λ3 = κ

which is the same as Method M1, but with the first L-moment

replaced by the median. Method M3 is a robust alternative to

Method M1.



Quantile estimates

GEV quantiles are given by

qp ≡ qp(θ) =

{
β + α

κ(1− (− log p)κ) (κ 6= 0)
β − α log(− log p) (κ = 0)

where F (qp) = p. A natural estimator of qp is

q̂p = qp(θ̂)

where θ̂ is an estimator of θ such as one of those considered.

Then
√
n(q̂p− qp) is asymptotically Gaussian with zero mean and

variance

∆TΣ∆, ∆ = (
∂qp

∂β
,
∂qp

∂α
,
∂qp

∂κ
)T

where Σ = cov(
√
n(θ̂ − θ). This result can be used to give

approximate standard errors for qp(θ̂).
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3. Computational issues

All methods, including ML, involve constrained maximisation of

the log-likelihood. The constraints fall into three groups;

• support of the GEV density;

• moment constraints;

• technical constraint −0.5 < κ < 0.5.

Estimation strategy: Optimise over all parameters except κ,

taking careful account of the constraints, and form a profile log-

likelihood for κ which is plotted and optimised over κ.

This procedure proves to be numerically robust, graphically in-

formative, and computationally efficient.



For Method M1 the constraints reduce to

max(κ−M1,−0.5) < κ < min(κ+
M1,0.5).

where

κ−M1 = − ln

(
1 +

λ̂2

λ̂1 −mini xi

)
/ ln 2

κ+
M1 = − ln

(
1−

λ̂2

maxiXi − λ̂1

)
/ ln 2

are determined solely from the data.

Method M1 provides simple, computationally efficient estimates

that can be used in their own right, or as initial estimates to

computationally intensive methods such as ML.



For maximum likelihood (ML) the constraints reduce to

α > αML =

{
κ(maxiXi − β) (κ ≥ 0)
−κ(β −miniXi) (κ < 0)

provided β, the 0.3679 quantile of the GEV distribution, satisfies

min
i
Xi ≤ β ≤ max

i
Xi.

Note that

• constraint is linear in α, β given κ;

• P (miniXi ≤ β ≤ maxiXi) > 1 − 10−5 for n > 25 so β con-

straint is a reasonable assumption in practice.

Simple constraints also hold for methods M2 and M3.



4. Numerical study and an application

A simulation study was undertaken to check how well the asymp-

totic results applied in practice with

• sample sizes n = 30, 60 and 120;

• β = 0, α = 1 and −0.5 < κ < 0.5;

• 1000 replications for each choice of κ;

• M1, M2, M3 and ML estimates determined in each case.

The estimated bias and root-mean-squared error (RMSE) for

each method was then computed as a function of κ.
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Now consider an application to a sample of 24-hour annual max-

imum rainfall from Wellington.

- IPO + IPO All
Sample size 31 29 60
Mean (first L-moment) 82.0 75.5 78.9
Median 73.9 70.1 73.6
Standard deviation 28.7 19.0 24.5
Second L-moment 16.3 10.4 13.6
Maximum 153.2 121.2 153.2
Minimum 47.0 51.4 47.0

Wellington 24-hour annual maximum rainfall statistics (mm) over the

period 1940-1999 and for each phase of the IPO.

First analyse the entire data set.
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Method β α κ qp
L 66.98 (2.67) 18.22 (2.12) -0.07 (0.10) 166.48 (23.96)
M1 66.29 (2.40) 16.45 (1.87) -0.16 (0.10) 178.79 (30.99)
M2 66.19 (2.40) 16.43 (1.87) -0.17 (0.10) 180.09 (31.45)
M3 67.18 (2.89) 16.94 (1.98) -0.14 (0.10) 175.96 (28.82)
CML 66.32 (2.41) 16.54 (1.89) -0.17 (0.10) 182.77 (32.43)

Estimates of β, α, κ, and qp (p = 0.99) for Wellington 24-hour annual

maximum rainfall (mm) over the period 1940-1999 using L-moments (L)

and methods M1, M2, M3, CML (asymptotic standard errors in parentheses).

Now analyse the data within each phase of the IPO.



- IPO
Method β α κ qp
L 68.30 (4.71) 23.24 (3.62) -0.01 (0.14) 178.84 (33.04)
M1 66.96 (4.07) 20.05 (3.15) -0.15 (0.14) 200.41 (50.13)
M2 66.98 (4.07) 20.05 (3.14) -0.15 (0.14) 200.19 (49.74)
M3 66.47 (4.66) 19.65 (3.27) -0.17 (0.15) 202.88 (53.22)
CML 67.13 (4.09) 20.16 (3.17) -0.16 (0.14) 204.15 (51.88)

+ IPO
Method β α κ qp
L 65.99 (2.77) 13.06 (2.30) -0.14 (0.16) 149.51 (33.07)
M1 65.66 (2.55) 12.10 (2.02) -0.20 (0.15) 156.31 (38.41)
M2 65.87 (2.55) 12.12 (2.01) -0.18 (0.15) 153.74 (35.94)
M3 65.54 (2.94) 11.98 (2.13) -0.21 (0.16) 157.15 (39.71)
CML 65.97 (2.56) 12.21 (2.02) -0.19 (0.15) 155.70 (36.91)

Estimates of β, α, κ, and qp (p = 0.99) for Wellington 24-hour annual

maximum rainfall (mm) within each phase of the IPO over the period 1940-

1999 using L-moments (L) and methods M1, M2, M3, CML (asymptotic

standard errors in parentheses).

Likelihood ratio test retains hypothesis of no difference.



5. Conclusions

Mixed ML and L-moments GEV estimation methods have been
generalised to include other moment constraints and

• asymptotic properties derived;

• analytic expressions given for the asymptotic covariances;

• results verified by simulation and efficiencies established;

• profile likelihoods and careful account of constraints have led
to efficient and robust computational procedures.

Key findings:

• finite sample performances of all methods compare favourably
with asymptotic results when κ > −0.3, n ≥ 30;

• ML performed well over −0.5 < κ < 0.5 for n ≥ 30.


