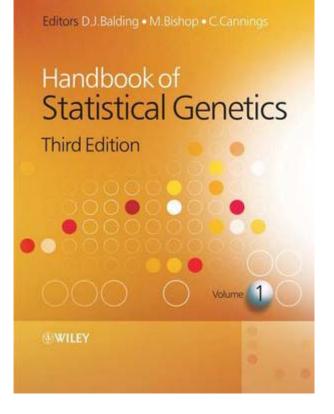
Statistical genetic approaches for estimating population structure with applications to fisheries populations

Toshihide Kitakado¹, Shuichi Kitada¹ and Hirohisa Kishino²

¹Tokyo University of Marine Science and Technology ²University of Tokyo

Australia-Japan Workshop on Data Science 2009

Handbook of Statistical Genetics, 3rd ed. (Balding et al. eds 2007)



© FOCUS ON STATISTICAL ANALYSIS

NATURE REVIEWS GENETICS (2006) REVIEWS

Computer programs for population genetics data analysis: a survival guide

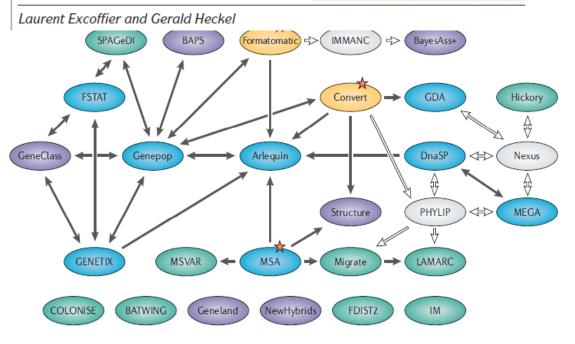
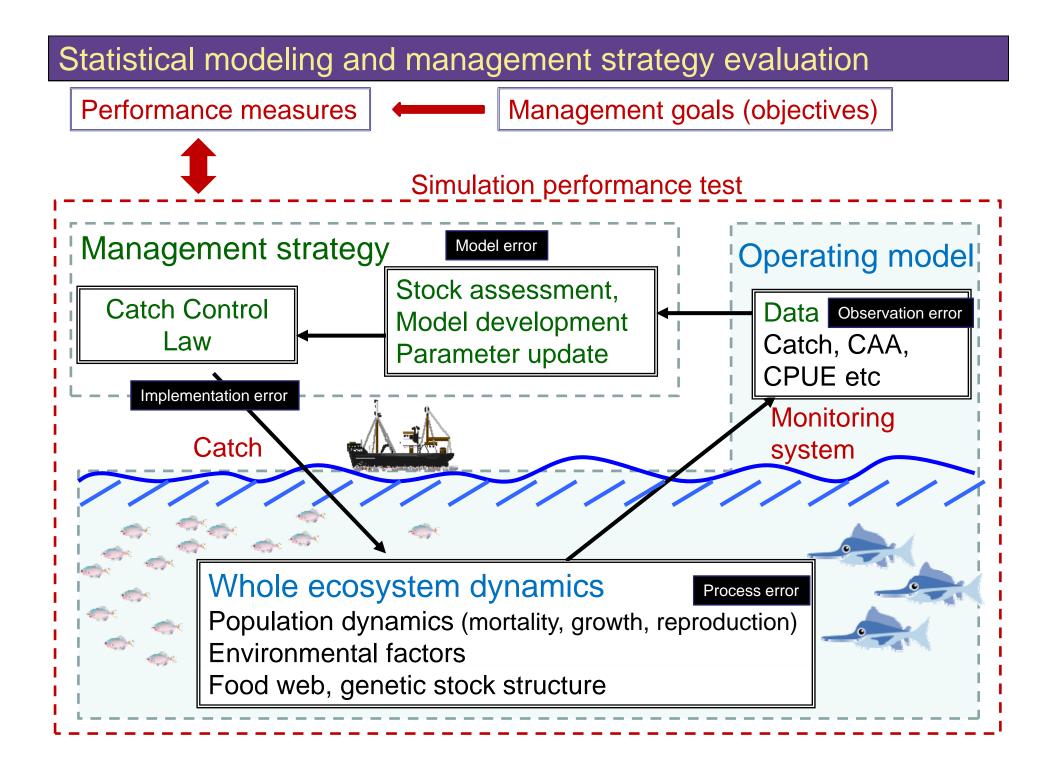
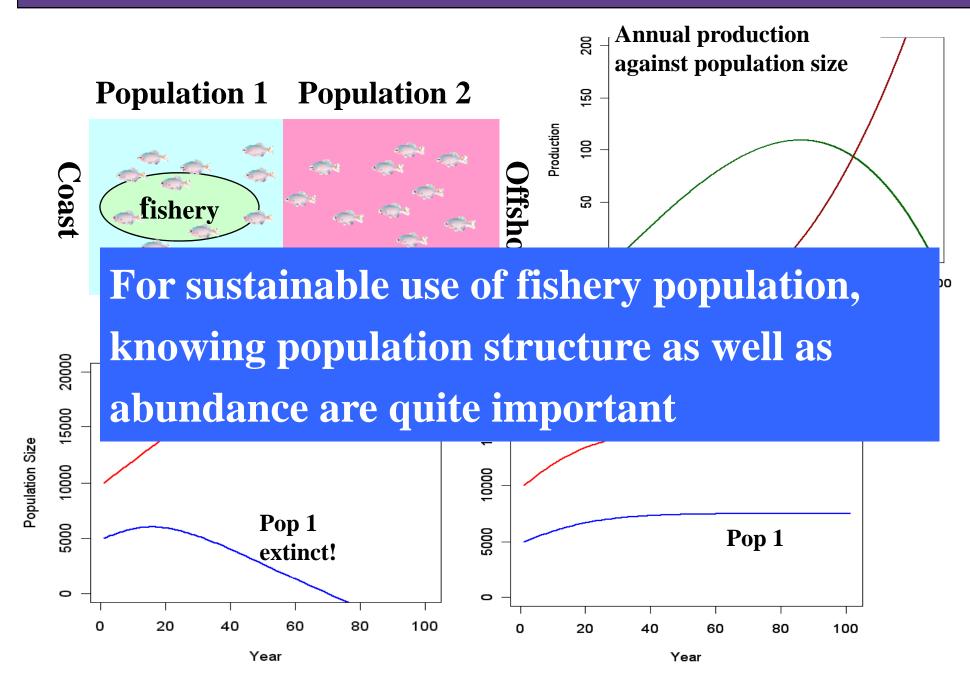


Figure 1 | Flow chart of possible data exchange between different population genetics programs.

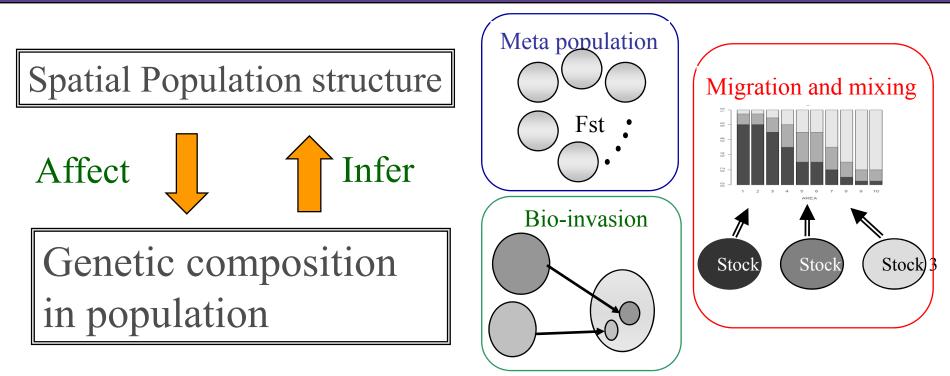
1.Why must we consider population structure for fishery resource management ?



Fishery management and population structure



Several types of population structures



For statistical modeling of population structure

- Hierarchical structure
- Latent variables

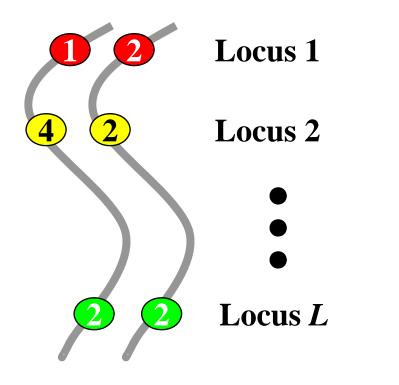
Here, examples with population differentiation and mixing are introduced

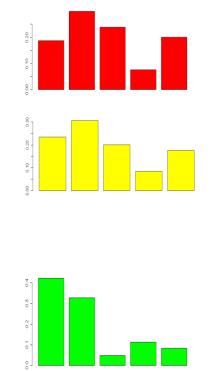
2. Estimation of population differentiation

- Population differentiation
- Likelihood for estimating Fst under a metapopulation
- Empirical Bayes estimation of pairwise Fst

Allele frequencies

Individual genotype



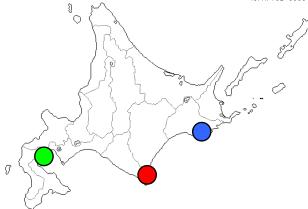


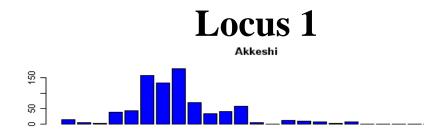
These allele frequencies differ if populations differ

(C)Aries 1993

Pacific herring

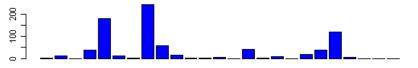
0

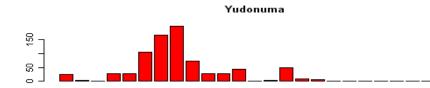




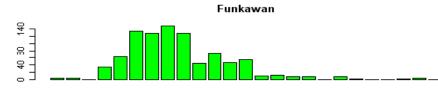
Locus 2

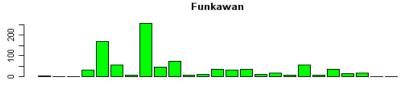
Akkeshi

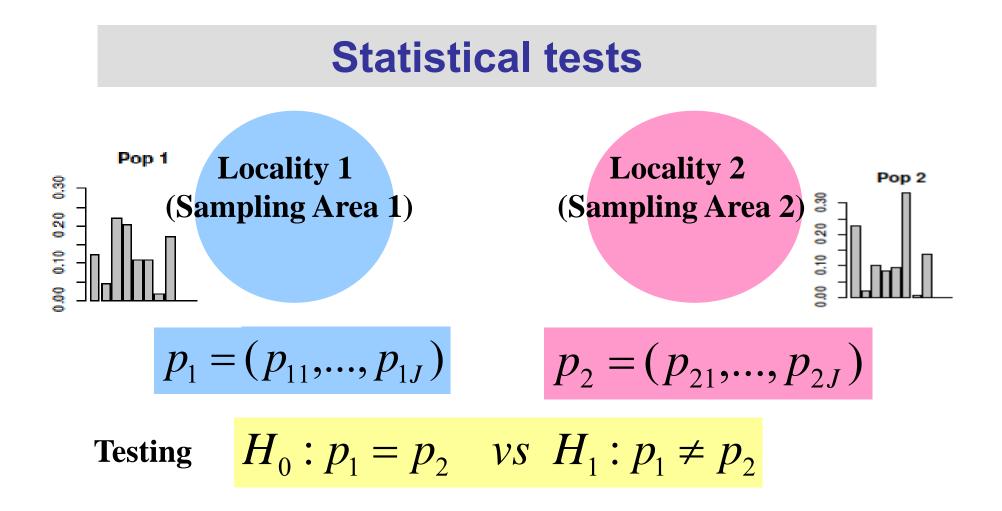




Yudonuma 220 6 -1



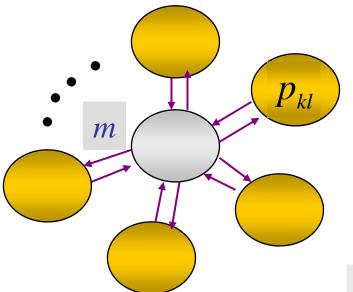




Hard to say that the two are same!Need information on gene flow

Metapopulation model

Migration-drift balance in metapopulation

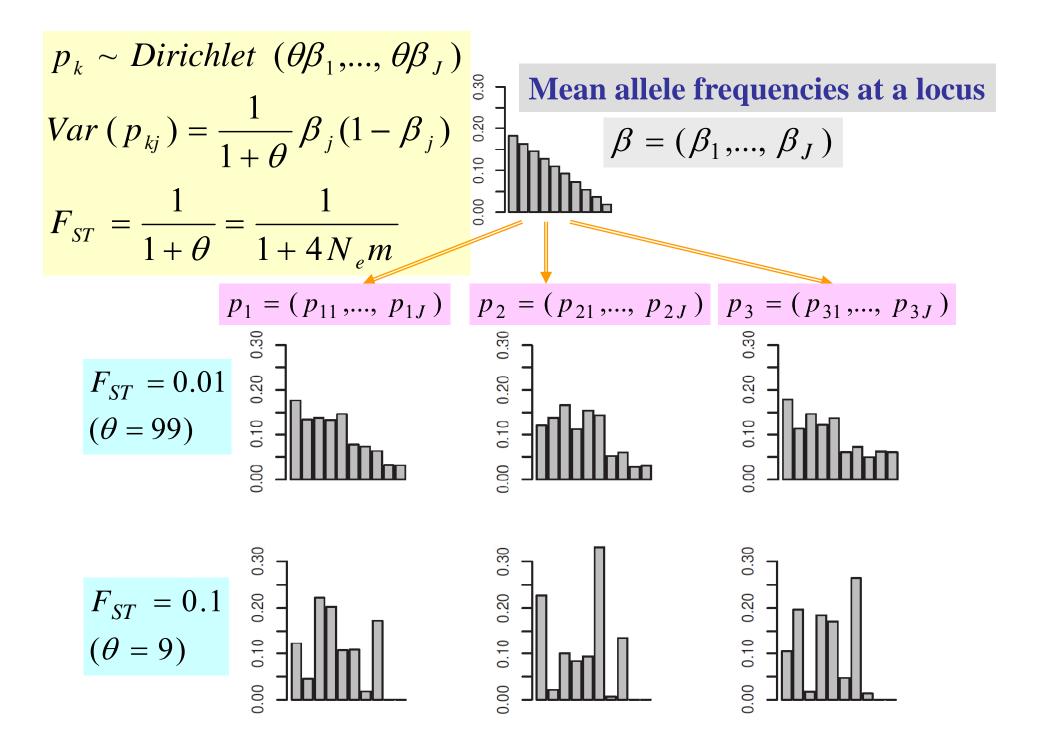


Wright (1969) Rannala and Hartigan (1995)

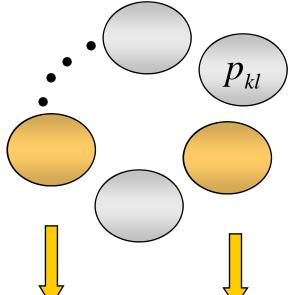
$$E[\Delta p_t] = -m p_t + m\beta$$
$$Var[\Delta p_t] = \frac{p_t(1 - p_t)}{2N_e}$$

Equilibrium distribution of allele frequencies

$$p_{kl} = (p_{kl1}, ..., p_{klJ}) \sim D(\theta \beta_{l1}, ..., \theta \beta_{lJ})$$
$$Var(p_{klj}) = \frac{1}{1+\theta} \beta_{lj} (1-\beta_{lj})$$
$$F_{ST} = \frac{1}{1+\theta} = \frac{1}{1+4N_e m}$$



Sampling from a metapopulation



Distribution of allele frequencies

$$p_{kl} = (p_{kl1}, ..., p_{klJ}) \sim D(\theta \beta_{l1}, ..., \theta \beta_{lJ})$$

Variance of allele frequencies

 $Var(p_{klj}) = \frac{1}{1+\theta}\beta_{lj}(1-\beta_{lj})$ Sampling of localities Sampling of allele counts $F_{ST} = \frac{1}{1+\theta}$

 $\begin{aligned} n_{kl} &= (n_{kl1}, \dots, n_{klJ}) \mid p_{kl} \sim Multi \left(N_k; p_{kl1}, \dots, p_{klJ} \right) \\ n_{kl} &\sim DM(N_k; \theta \beta_1, \dots, \theta \beta_J) \end{aligned}$

Probability distribution of allele counts given true allele frequencies

Multinomial
$$f(n_{kl}|p_{kl}) = \frac{N_k!}{\prod_{j=1}^{J_l} n_{klj}!} \prod_{j=1}^{J_l} p_{klj}^{n_{klj}}$$

True allele frequencies

Dirichlet
$$f(p_{kl};\theta,\beta_l) = \frac{\Gamma(\theta)}{\prod_{j=1}^{J_l} \Gamma(\theta\beta_{lj})} \prod_{j=1}^{J_l} p_{klj}^{\theta\beta_{lj}-1}$$

$$\begin{aligned} \mathbf{Marginal distribution of allele counts}} \\ \mathbf{Dirichlet-Multinon} \\ f(n_{kl};\theta,\beta_l) &= \int \cdots \int f(n_{kl}|p_{kl})f(p_{kl};\theta,\beta_l)dp_{kl} \\ &= \frac{N_k!}{\prod_{j=1}^{J_l} n_{klj}!} \cdot \frac{\Gamma(\theta)}{\Gamma(N_k+\theta)} \cdot \prod_{j=1}^{J_l} \frac{\Gamma(n_{klj}+\theta\beta_{lj})}{\Gamma(\theta\beta_{lj})}. \\ L(\theta,\beta) &= \prod_{k=1}^{K} \prod_{l=1}^{L} f(n_{kl};\theta,\beta_l) \\ &= \prod_{k=1}^{K} \prod_{l=1}^{L} \frac{N_k!}{\prod_{j=1}^{J_l} n_{klj}!} \cdot \frac{\Gamma(\theta)}{\Gamma(N_k+\theta)} \cdot \prod_{j=1}^{J_l} \frac{\Gamma(n_{klj}+\theta\beta_{lj})}{\Gamma(\theta\beta_{lj})}. \end{aligned}$$

Neyman-Scott problem

 Pop 1
 Pop 2
 ····
 Pop K

 Locus 1
 $\beta_1 = (\beta_{11}, ..., \beta_{1J_1})$ $\beta_2 = (\beta_{21}, ..., \beta_{2J_2})$

 Locus 2
 $\beta_2 = (\beta_{21}, ..., \beta_{2J_2})$

 ...
 ...

 Locus L
 $\beta_L = (\beta_{L1}, ..., \beta_{LJ_L})$

Non-consistency of ML estimation of θ if K is small : Typical problems in ML method in the presence of many nuisance parameters

Separation of likelihood is impossible for DM case

Integrated likelihood (Kitakado et al 2006)

Integrated-likelihood

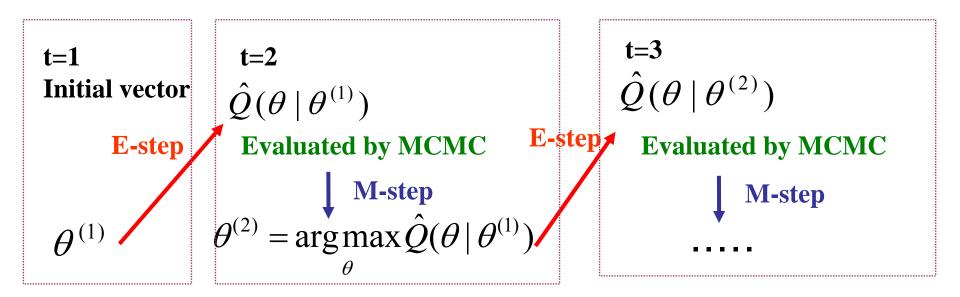
$$L_{I}(\theta) = \int_{D} L(\theta, \beta) d\beta$$

=
$$\prod_{l=1}^{L} \left\{ \int \cdots \int \prod_{k=1}^{K} \frac{N_{k}!}{\prod_{j=1}^{J_{l}} n_{klj}!} \cdot \frac{\Gamma(\theta)}{\Gamma(N_{k} + \theta)} \cdot \prod_{j=1}^{J_{l}} \frac{\Gamma(n_{klj} + \theta\beta_{lj})}{\Gamma(\theta\beta_{lj})} d\beta_{l} \right\},$$

No closed formula of the integrated likelihood Direct maximization is impossible

$$\begin{array}{c} \gamma = (1,...,1) \\ \downarrow \\ Dirichet (\gamma) \\ \downarrow \\ \beta = (\beta_1,...,\beta_J) \\ \rho_1 = (p_{11},...,p_{1J}) \\ Multi(N_k,p_k) \\ \eta_1 = (n_{11},...,n_{1J}) \\ \downarrow \\ n_1 = (n_{11},...,n_{1J}) \\ \bullet \bullet \bullet \bullet \\ n_K = (n_{K1},...,n_{KJ}) \end{array}$$

MCEM algorithm



MCEM algorithm:

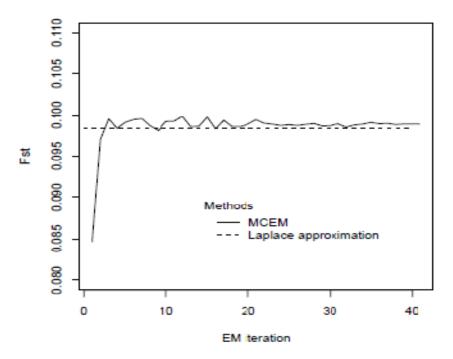
- •Convergence MLE
- Iterate MCMC sampling at each step
- •Slow convergence

Need another algorithm with faster computation

 \Rightarrow <u>A Laplace approximation</u>

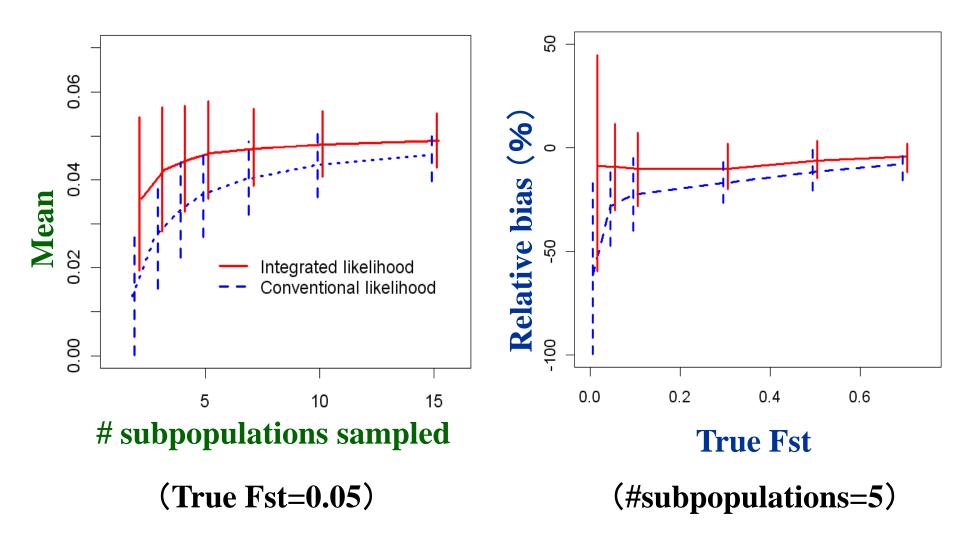
Laplace approximation

$$\begin{split} L_{I}(\theta) &= \prod_{l=1}^{L} \int f(n_{1l}, \dots, n_{Kl} | \theta, \beta_{l}) d\beta_{l} \\ L_{I}^{(l)}(\theta) &\approx \int \exp\left\{ \log f(n_{l} | \theta, \hat{\beta}_{l}(\theta)) - \frac{1}{2} (\beta_{l} - \hat{\beta}_{l}(\theta))' H(\theta) (\beta_{l} - \hat{\beta}_{l}(\theta)) \right\} d\beta_{l} \\ &= \det\{H(\theta)\}^{-1/2} f(n_{l} | \theta, \hat{\beta}_{l}(\theta)), \end{split}$$



ADMB-RE (Skaug and Fournier, 2006)

Comparison between conventional ML and IL methods

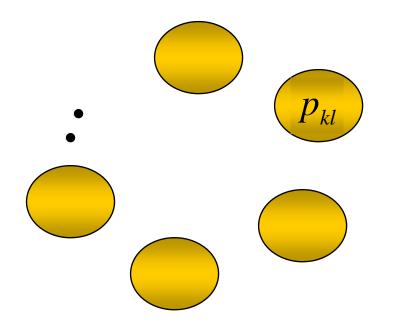


Estimation result

Case	Method	θ	F_{ST}
		•	~ 1
Pacific herring	ML	156.6 (13.4)	$0.0063 \ (0.00054)$
	PL	$167.9\ (13.8)$	$0.0059 \ (0.00049)$
	IL	91.7 (9.2)	$0.0108 \ (0.00109)$
African elephants	ML	$1.86 \ (0.486)$	$0.350\ (0.109)$
	PL	1.97 (0.503)	0.337~(0.103)
	IL	1.67(0.433)	0.374 (0.114)
Channel Island foxes	ML	$0.425 \ (0.210)$	$0.702 \ (0.178)$
	PL	$0.421 \ (0.206)$	$0.704 \ (0.175)$
	IL	$0.403 \ (0.198)$	$0.713\ (0.170)$

As shown in simulation studies, a large difference between IL and ML(PL) was observed in case of small Fst (like in fish and birds)

Pairwise Fst



Hierarchical models and global Fst improve the estimation performance of pairwise Fst

Empirical Bayes estimation of pairwise Fst Kitada, Kitakado and Kishino (2007)

$$n_{kl} = (n_{kl1}, ..., n_{klJ}) | p_{kl} \sim Multi(N_k; p_{kl1}, ..., p_{klJ_l})$$

$$p_{kl} = (p_{kl1}, ..., p_{klJ}) \sim D(\theta\beta_{l1}, ..., \theta\beta_{lJ})$$

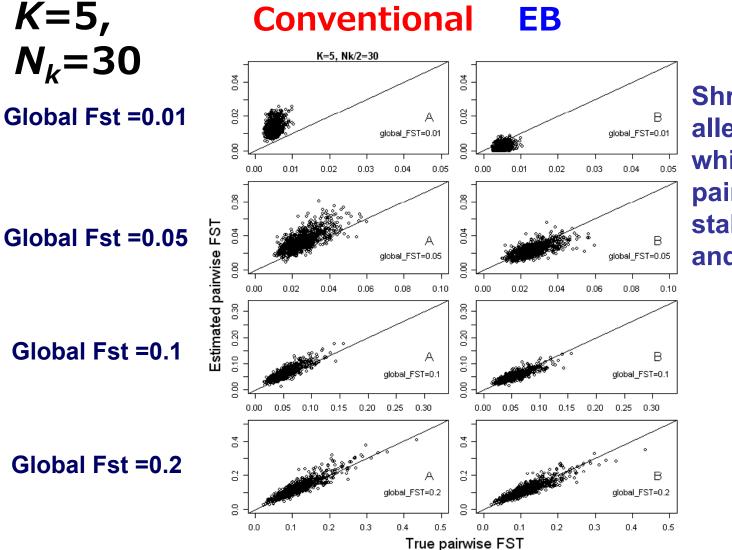
$$p_{kl} | n_{kl} \sim D(\hat{\theta}\hat{\beta}_{l1} + n_{kl1}, ..., \hat{\theta}\hat{\beta}_{lJ_l} + n_{klJ_l})$$

$$F_{St}^P = \frac{H_T - H_S}{H_T} \qquad H_T = 1 - \sum \overline{p}_j^2 \qquad \text{Locality 1} \qquad \text{Locality 2}$$

$$H_S = 1 - \frac{1}{2} \sum \sum p_{kj}^2 \qquad p_1 = (p_{11}, ..., p_{1J}) \qquad p_2 = (p_{21}, ..., p_{2J})$$

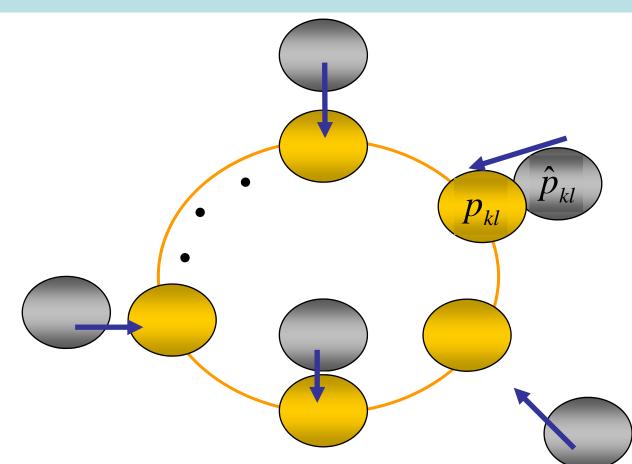
Empirical Bayes estimator, simulated posterior distribution, shrinks to the global Fst and has better estimation performance
The nominal estimator has less accuracy

Improvement of the estimation of pairwise Fst by EB methods



Shrink to the mean allele frequencies, which makes the pairwise estimates stable, less biased and variance

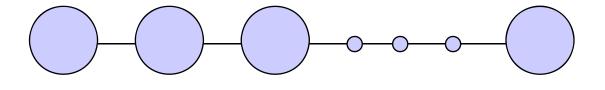
Shrinkage effect in empirical Bayes



Shrinkage to the mean allele frequencies can make their estimates stable. This is effective especially when the number of sampling localities is large while sample size from each locality is small

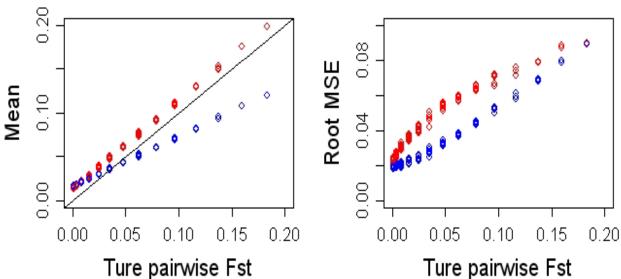
Robustness of empirical Bayes for estimation of pairwise Fst

 Stepping Stone Model

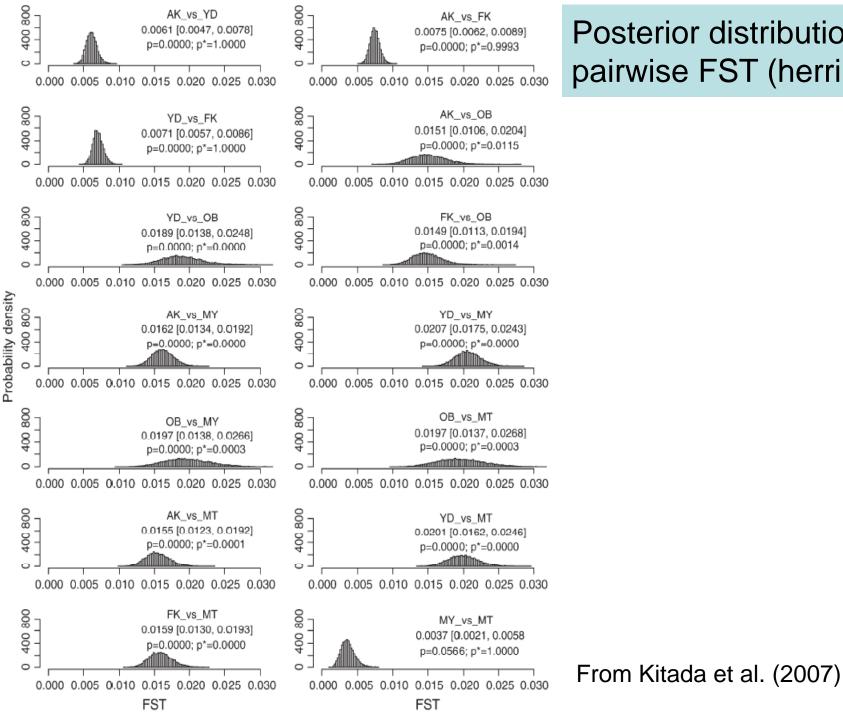


Nei's GST and EB

- 15 subpopulations
- FST=0.001
 between two adjacent
 subpopulations



Metapopulation assumption works well as a working model to get a better estimation performance



Posterior distributions of pairwise FST (herring)

Software List

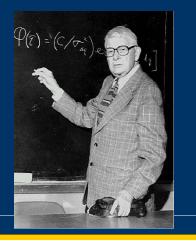
POPDIF : Empirical Bayese estimation of pairwise Fst between subpopulations

 POPMIX : Maximum likelihood estimation of mixing proportions from composite genotype data **POPDIF** : Empirical Bayese estimation of pairwise Fst between subpopulations

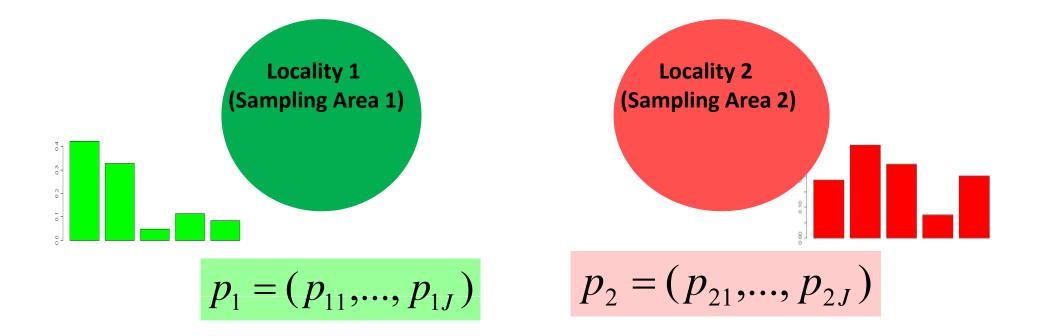
Publication	Kitada, S., T. Kitakado and H. Kishino (2007) Empirical Bayes inference of pairwise FST and its distribution in the genome. Genetics 177, 861-873. (PDF)		
	Kitakado, T., Kitada, S., H. Kishino and H. J. Skaug (2006) An Integrated-Likelihood Method for Estimating Genetic Differentiation Between Populations. Genetics 173, 2073- 2082. (PDF)		
	Kitada, S. and H. Kishino (2004) Simultaneous detection of linkage disequilibrium and genetic diffrentiation of subdivided populations. Genetics 167, 2003-2013. (PDF)		
Summary	<i>POPDIF</i> estimates locus-specific global Fst and the rate of gene flow by maximum/integrated likelihood method from genotype data of K geographical samples. On the basis of the global Fst estimate, posterior distributions for all sets of the population pairwise Fst are simulated. Allele data with Genepop format or allele (haplotype) frequencies are available.		
Author	Toshihide Kitakado, Shuichi Kitada and Hirohisa Kishino		
Download	Download program and manual.(in preparation)		

http://www2.kaiyodai.ac.jp/~kitada/Conservation/index_eng.html

3. Estimation of population mixture



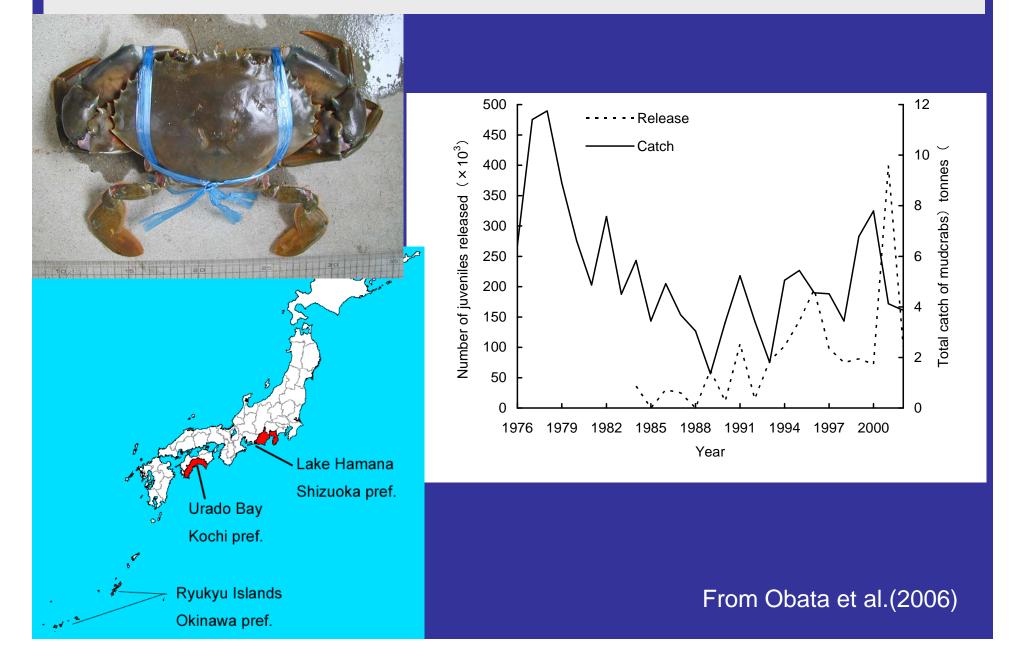
Population differentiation -> mixture



Population differentiation -> mixture

proportion

Enhancement program for mud crab in Japan



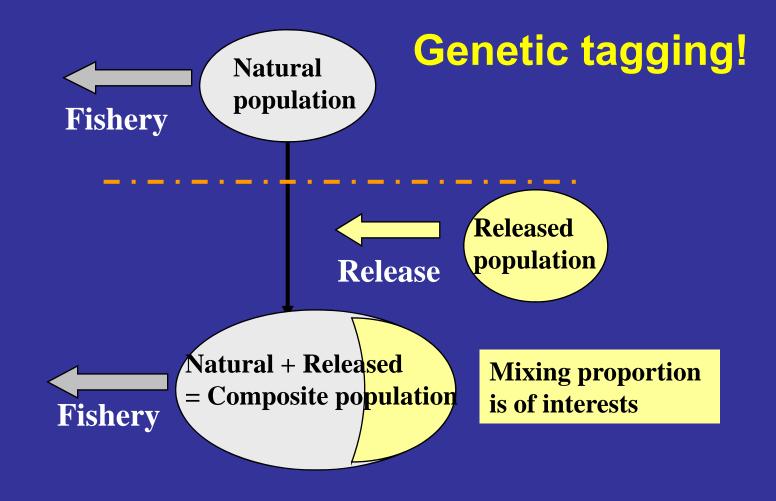
Effectiveness of Stock Enhancement Programs

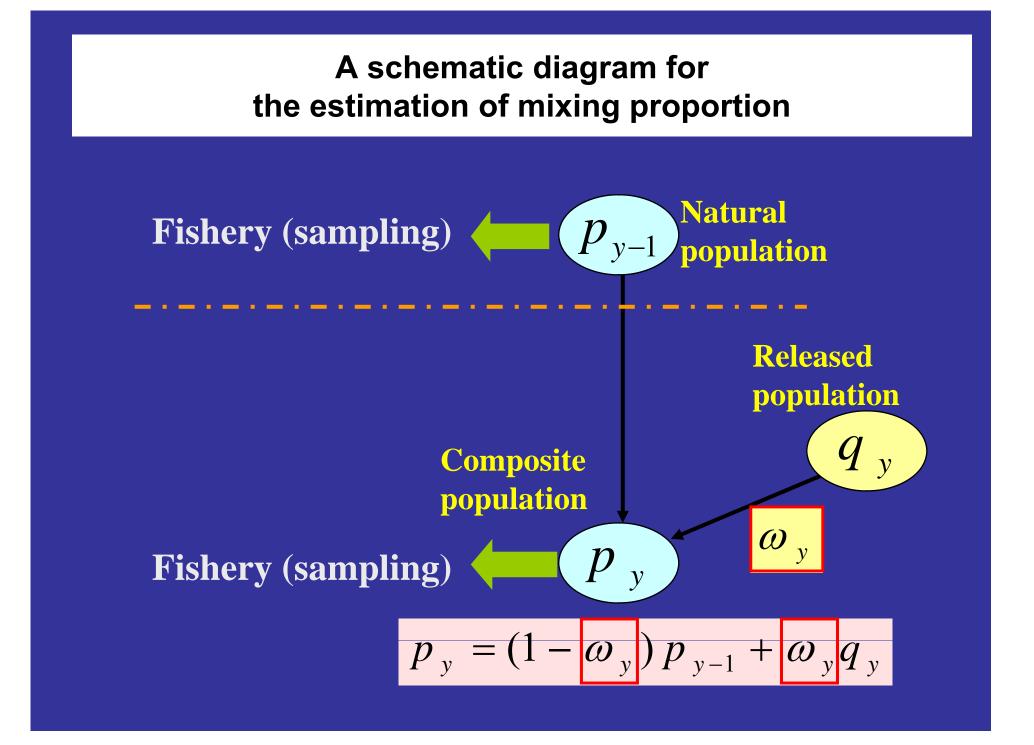
 Recovery rate Too small recovery rates means ineffectiveness of programs

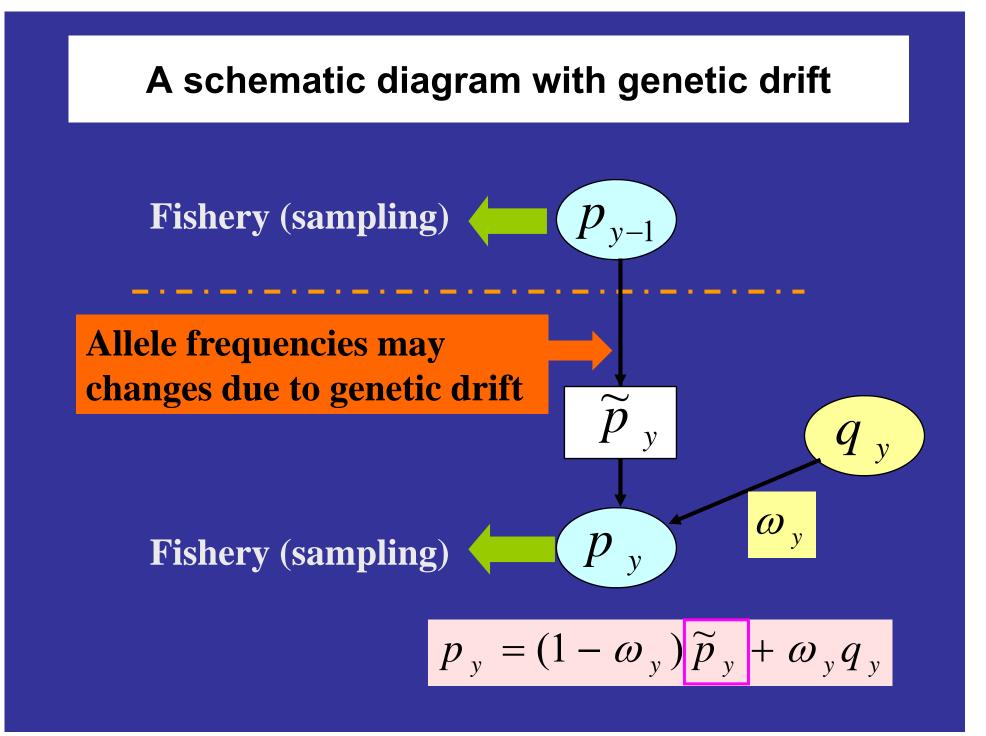
• Mixing proportion

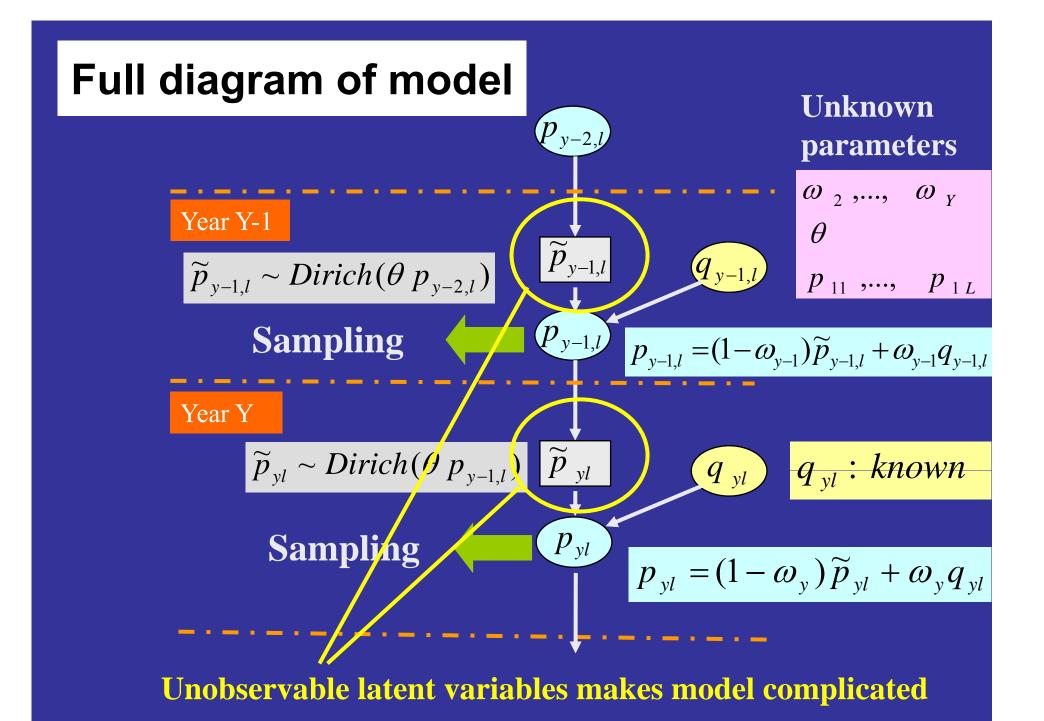
Too large contribution of released juveniles to a natural population raises concern reducing its effective population size (e.g., Ryman and Laikre, 1991)

Estimation of mixing proportions









Constructing a full likelihood

Individual genotype

$$\begin{aligned} x_{yil}^{(1)} &= (x_{yil1}^{(1)}, ..., x_{yilJ_l}^{(1)}) \quad maternal\,allele \\ x_{yil}^{(1)} &= (x_{yil1}^{(1)}, ..., x_{yilJ_l}^{(1)}) \quad paternal\,allele \end{aligned}$$

Joint probability of observation and latent variables

$$L_{complete}(p_1, \widetilde{p}_2, ..., \widetilde{p}_Y, \theta, \omega_2, ..., \omega_Y)$$

= $L_1(p_1, \widetilde{p}_2, ..., \widetilde{p}_Y, \omega_2, ..., \omega_Y | Data) \cdot L_2(p_1, \theta, \omega_2, ..., \omega_Y | \widetilde{p}_2, ..., \widetilde{p}_Y)$

Marginal likelihood for observation (Integrated likelihood)

$$L_{obs}(\theta, \omega_{2}, ..., \omega_{Y})$$

$$= \int \cdots \int L_{complete}(p_{1}, \widetilde{p}_{2}, ..., \widetilde{p}_{Y}, \theta, \omega_{2}, ..., \omega_{Y}) \prod_{l=1}^{L} dp_{1l} d\widetilde{p}_{2l} \cdots d\widetilde{p}_{Yl}$$

Estimation with latent variables

Several approaches have been developed

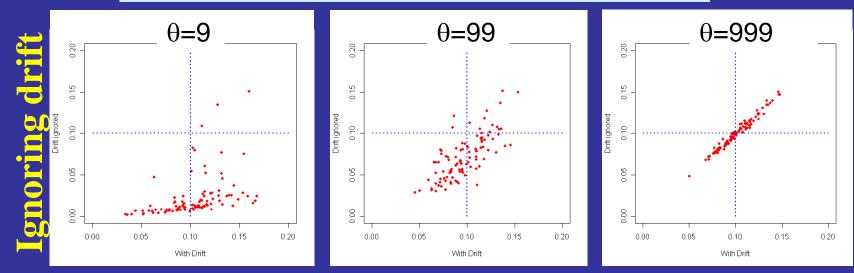
- Consider as a full Bayesian model
- Monte Carlo EM algorithm
- Importance sampling

 Laplace approximation (analytical)

> Markov chain Monte Carlo (MCMC) is typically utilized. Computationally intensive

Simulation

Scatter plots of estimates in 3rd year



Considering genetic drift

•Estimates with considering genetic drift distributed around the true value of mixing proportion

 Model with ignoring genetic drift caused severe underestimation when the drift was large

Application to mud crab data

Observed haplotype frequencies from fishing ground

Haplotype										
Year	1	2	3	4	5	6	7	8	9 Ot	hers
1996	79	23	13	16	10	3	1	3	0	1
1997	90	65	16	13	11	2	5	2	0	9
1998	57	37	22	11	7	0	1	2	0	6
1999	159	124	39	15	11	3	5	5	5	37
2000	225	147	47	32	21	2	4	5	4	34
2001	71	32	8	7	5	0	0	1	11	23
2002	105	50	30	17	0	5	0	0	5	35

Haplotype frequencies of released populations

Haplotype										
Year	1	2	3	4	5	6	7	6	7 (Others
1996	0	0	0	0	0	0	0	0	0	0
1997	0	98,300	0	0	0	0	0	0	0	0
1998	0	0	64,000	0	0	0	11,000	0	0	0
1999	0	0	0	81,000	0	0	0	0	0	0
2000	0	0	0	0	72,000	0	0	0	0	0
2001	0	0	0	0	0	0	0	0	149,000	0
2002	0	0	0	0	0	0	0	0	0	0

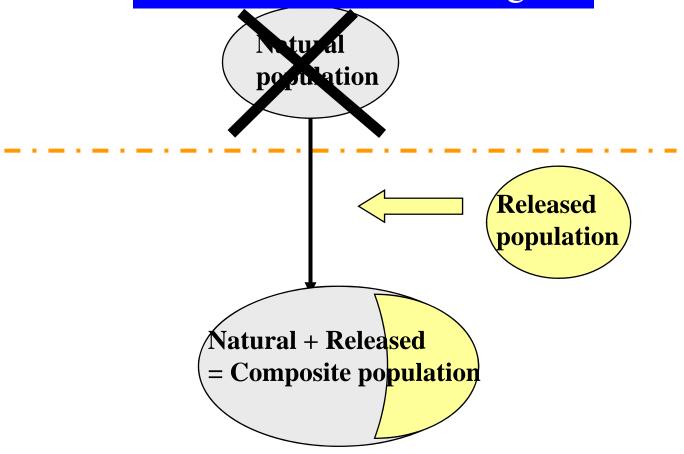
Estimation results

Year	Mixing Proportion				
1997	0.152	(0.023)			
1998	0.025	(0.021)			
1999	0.000	(0.000)			
2000	0.015	(0.007)			
2001	0.039	(0.009)			

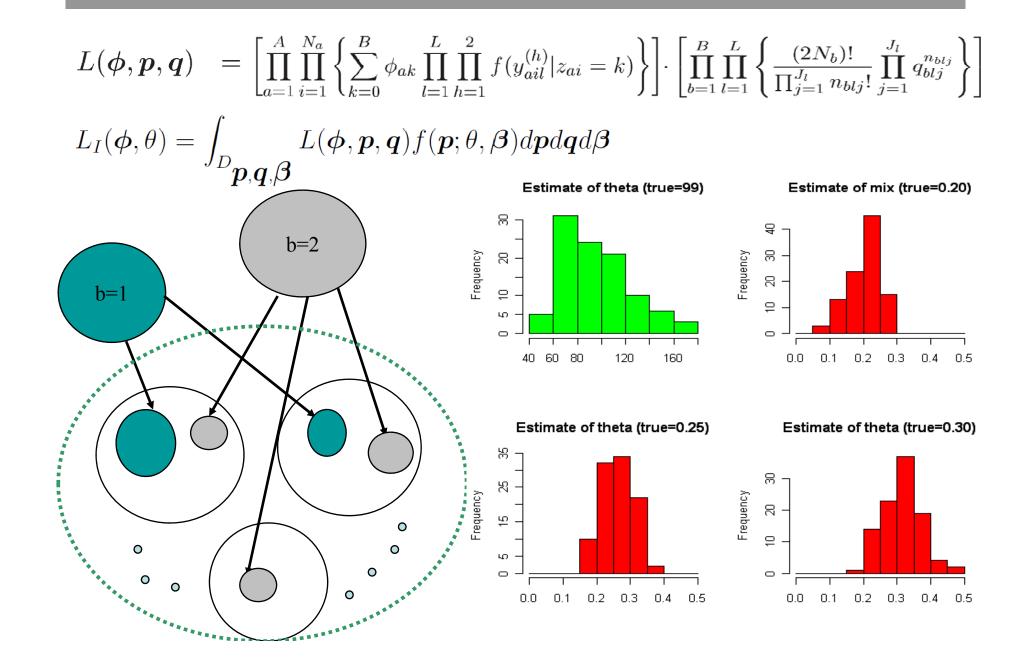
- Relatively small level of genetic drift was observed
- Due to this, only a slight impact was given on the estimation of mixing proportions in this example
- Low level of mixing proportions except for 1997

Mixing proportions released (again)

Sometimes no information is available before releasing



An integrated likelihood function and results



4. Concluding remarks

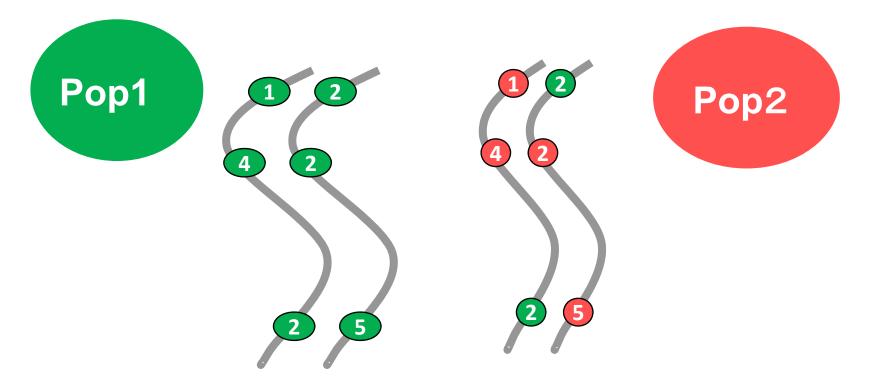
Concluding remarks

 As in analyses for human population, use of SNPs with a large number of sites may be common in science for wildlife

Concluding remarks

- As in analyses for human population, use of SNPs with a large number of sites may be common in science for wildlife
- Quite often, individual assignment methods without assuming baseline populations are applied, but the reliability of method especially in the estimation of the number of populations is still open to question

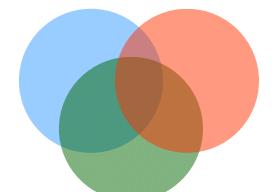
Mixture and admixture



Mixture The target is origin of an individual Assignment probability =prob that the individual comes from a population Admixture The target is origin of alleles in an individual Assignment probability =proportion of alleles coming from an ancestral population

Individual assignment

Pritchard et al(2000), Falush et al(2003)



$$y_{i1}^{(1)} = (0, 0, 1, 0, 0), \qquad y_{i1}^{(2)} = (0, 1, 0, 0, 0), \\ \dots \\ y_{iL}^{(1)} = (0, 0, 0, 0, 1, 0, 0), \quad y_{iL}^{(2)} = (1, 0, 0, 0, 0, 0, 0).$$

Z_i : latent variable representing individual's origin

$Y_{il}^{(m)} Z_i = z_i, \ p_{z_i l} \sim Multi(1; p_{z_i l})$	Posterior $p(Z_i = k Y)$
$P(Z_i = k) = \frac{1}{K}$	
$p_{kl} \sim Dirichlet(\lambda_1,, \lambda_{J_l})$	30
Hyperparameter $\lambda_j = 1 \ (j = 1,, J)$	
(As noninformative prior)	

Thank you very much for your kind attention!