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1 Why must we consider population structure1.Why must we consider population structure 
for fishery resource management ? 



Statistical modeling and management strategy evaluation
Management goals (objectives)Performance measures

Simulation performance test

D tCatch Control
Stock assessment,

Management strategy Operating modelModel error

Data
Catch, CAA,
CPUE etc

Catch Control 
Law 

Model development
Parameter update

Implementation error

Observation error

Catch
Monitoring
system

Implementation error

Wh l t d iWhole ecosystem dynamics
Population dynamics (mortality, growth, reproduction) 
Environmental factors 

Process error

Food web, genetic stock structure



Annual production

Fishery management and population structure

Population 1 Population 2

Annual production 
against population size

C
oas

O
ffsfisheryst

shore

fishery

P l ti i
For sustainable use of fishery population, 

Population size

False (assume one pop) True (assume 2 pops)

y
knowing population structure as well as 

b d it i t tPop 2 Pop 2abundance are quite important

Pop 1 
extinct! Pop 1



Several types of population structures

Spatial Population structure Migration and mixing

Meta population

F t

Affect Infer
Fst

Genetic composition 
i l i

Stock 1 Stock 2 Stock 3

Bio-invasion

in population 

For statistical modeling of population structure
・Hierarchical structure 
・Latent variables 

Here examples with population differentiation andHere, examples with population differentiation and 
mixing are introduced



2 E ti ti f l ti diff ti ti2. Estimation of population differentiation

・ Population differentiation 
Lik lih d f ti ti F t d t l ti・ Likelihood for estimating Fst under a metapopulation 

・ Empirical Bayes estimation of pairwise Fst 



Allele frequencies

Individual genotype

1 2 Locus 1

g yp

4 2 Locus 2

2 2 Locus L

These allele frequencies differThese allele frequencies differ 
if populations differ



PacificPacific 
herringg

1 2Locus 1 Locus 2



Statistical tests

L lit 1 L lit 2Locality 1 
(Sampling Area 1)

Locality 2 
(Sampling Area 2)
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•Hard to say that the two are same!
N d i f ti fl•Need information on gene flow



Metapopulation model 
Migration-drift balance in metapopulation
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Mean allele frequencies at a locus
Dirichletp Jk
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Sampling from a metapopulationSampling from a metapopulation

Distribution of allele frequencies
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Distribution of allele frequencies

Variance of allele frequencies
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Probability distribution of allele counts given true allele frequencies

Multinomial

T ll l f iTrue allele frequencies

DirichletDirichlet

Marginal distribution of allele counts
Di i hl M l i i lDirichlet-Multinomial

ML estimate



Neyman-Scott problemy p
Pop 1 Pop 2 Pop K・・・

),...,(
11111 Jβββ =Locus 1

),...,(
22212 Jβββ =Locus 2

)( βββ

・・・・・・

Non-consistency of ML estimation of θ if K is small :

Locus L ),...,( 1 LLJLL βββ =

y
Typical problems in ML method in the presence of many   
nuisance parameters
Separation of likelihood is impossible for DM case



Integrated likelihood (Kitakado et al 2006)

Integrated-likelihood

No closed formula of the integrated likelihood
Direct maximization is impossible
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MCEM algorithm

t=1 t=2
ˆ
t=3

Initial vector )|(ˆ )1(θθQ
Evaluated by MCMCE-step E-step
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Evaluated by MCMC
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MCEM algorithm：g
•Convergence MLE 
•Iterate MCMC sampling at each step
Sl•Slow convergence Need another algorithm with 

faster computation 
⇒A Laplace approximation⇒A Laplace approximation



Laplace approximation

ADMB-RE
(Skaug and Fournier, 2006)



Comparison between 
conventional ML and IL methodsconventional ML and IL methods
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Estimation result

As shown in simulation studies, a large difference 
b t IL d ML(PL) b d i fbetween IL and ML(PL) was observed in case of 
small Fst (like in fish and birds)



Pairwise Fst

klp

Hierarchical models and global Fst improve 
the estimation performance of pairwise Fstp p



Empirical Bayes estimation of pairwise Fst
Kit d Kit k d d Ki hi (2007)Kitada, Kitakado and Kishino (2007)
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•Empirical Bayes estimator, simulated posterior 
distribution, shrinks to the global Fst and has better 
estimation performanceestimation performance 
•The nominal estimator has less accuracy



Improvement of the estimation of 
i i F t b EB th dpairwise Fst by EB methods

K=5, EBConventionalK=5, 
Nk=30

EBConventional

Global Fst =0 01
Shrink to the mean 

Global Fst =0.01 allele frequencies, 
which makes the 
pairwise estimates 

Global Fst =0.05

p
stable, less biased 
and variance

Global Fst =0.1

Global Fst =0.2Global Fst 0.2



Shrinkage effect in empirical Bayes

klp̂klp
klp

Shrinkage to the mean allele frequencies can make their 
estimates stable. This is effective especially when the 
number of sampling localities is large while sample size 
from each locality is small



Robustness of empirical Bayes 
for estimation of pairwise Fstfor estimation of pairwise Fst

• Stepping Stone 
Model
15 b l ti N i’ GST d EB• 15 subpopulations

• FST=0.001 
between two

Nei’s GST and  EB

between two 
adjacent 
subpopulationssubpopulations

M t l ti ti k ll ki d lMetapopulation assumption works well as a working model 
to get a better estimation performance



Posterior distributions of 
pairwise FST (herring)p ( g)

From Kitada et al. (2007)



http://www2 kaiyodai ac jp/~kitada/Conservation/index eng htmlhttp://www2.kaiyodai.ac.jp/ kitada/Conservation/index_eng.html



3 E ti ti f l ti i t3. Estimation of population mixture



Population differentiation -> mixture p

Locality 1 
(Sampling Area 1)

Locality 2 
(Sampling Area 2)
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Population differentiation -> mixturep

Baseline１ Baseline 2

Locality 1 
(Sampling Area 1)

Locality 2 
(Sampling Area 2)

Mi in propMixing prop
ω : 1－ω

L lit 3

If allele counts from the 
two baselines and 
mixed are observable

Mixed 
stock

Locality 3 
(Sampling Area 3)

mixed are observable, 
then possible to 
estimate the mixingestimate the mixing 
proportion



Enhancement program for mud crab in Japan

Trends in catch and release 
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Effectiveness of Stock 
Enhancement Programs

• Recovery rate
Too small recovery rates means oo s a eco e y ates ea s
ineffectiveness of programs

• Mixing proportion
Too large contribution of released juvenilesToo large contribution of released juveniles 
to a natural population raises concern 
reducing its effective population sizereducing its effective population size
(e.g., Ryman and Laikre, 1991)



Estimation of mixing proportionsg p p

Genetic tagging!Natural 
population

Fishery

Genetic tagging!

Released 
populationRelease

Mixing proportion 
is of interests

Natural + Released 
= Composite population 

FisheryFishery



A schematic diagram for 
the estimation of mixing proportionthe estimation of mixing proportion

Fishery (sampling) Natural 
population1−yp

Released 
population

yqComposite
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A schematic diagram with genetic drift

1−ypFishery (sampling)

Allele frequencies may 

yqyp~changes due to genetic drift
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Full diagram of model
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Constructing a full likelihood
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Estimation with latent variables

Several approaches have been developedpp p
Consider as a full Bayesian model

Monte Carlo EM algorithm 

Importance sampling

Laplace approximation

Markov chain Monte Carlo 

Laplace approximation
(analytical )

ov c o e C o
(MCMC) is typically utilized.

Computationally intensiveComputationally intensive



Simulation
Scatter plots of estimates in 3rd year
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Considering genetic drift

Estimates with considering genetic drift distributed 
d th t l f i i ti

Considering genetic drift

around the true value of mixing proportion 

Model with ignoring genetic drift caused severe 
underestimation when the drift was large



Application to mud crab datapp

Haplotype

Observed haplotype frequencies from fishing ground
p yp

Year 1 2 3 4 5 6 7 8 9 Others
1996 79 23 13 16 10 3 1 3 0 1
1997 90 65 16 13 11 2 5 2 0 9
1998 57 37 22 11 7 0 1 2 0 61998 57 37 22 11 7 0 1 2 0 6
1999 159 124 39 15 11 3 5 5 5 37
2000 225 147 47 32 21 2 4 5 4 34
2001 71 32 8 7 5 0 0 1 11 23
2002 105 50 30 17 0 5 0 0 5 352002 105 50 30 17 0 5 0 0 5 35

Haplotype frequencies of released populations
Haplotype

Year 1 2 3 4 5 6 7 6 7 Others
1996 0 0 0 0 0 0 0 0 0 0
1997 0 98300 0 0 0 0 0 0 0 01997 0 98,300 0 0 0 0 0 0 0 0
1998 0 0 64,000 0 0 0 11,000 0 0 0
1999 0 0 0 81,000 0 0 0 0 0 0
2000 0 0 0 0 72,000 0 0 0 0 02000 0 0 0 0 72,000 0 0 0 0 0
2001 0 0 0 0 0 0 0 0 149,000 0
2002 0 0 0 0 0 0 0 0 0 0



Estimation results

Year Mixing Proportion

1997 0.152 (0.023)

1998 0.025 (0.021)

1999 0.000 (0.000)

2000 0.015 (0.007)( )

2001 0.039 (0.009)

Relatively small level of genetic drift was observed

Due to this, only a slight impact was given on the   , y g p g
estimation of mixing proportions in this example

Low level of mixing proportions except for 1997Low level of mixing proportions except for 1997



Mixing proportions released (again)g p p ( g )
Sometimes no information is 
available before releasing

Natural 
l ti

available before releasing

population

Released 
populationRelease p p

Natural + Released

Release

Natural + Released 
= Composite population 



An integrated likelihood function and results

b=2

b=1



4. Concluding remarks



Concluding remarks

• As in analyses for human population, use 
of SNPs with a large number of sites may 
be common in science for wildlife



Concluding remarks

• As in analyses for human population, use 
of SNPs with a large number of sites may 
be common in science for wildlife

• Quite often, individual assignmentQuite often, individual assignment 
methods without assuming baseline 
populations are applied but the reliabilitypopulations are applied, but the reliability 
of method especially in the estimation of  
the number of populations is still open tothe number of populations is still open to  
question



Mixture and admixture

Pop1 P1 2 1 2Pop1 Pop２1 2

4 2

1 2

4 2

2 5
2 5

Mixture
The target is origin of

Admixture
The target is origin of alleles The target is origin of 

an individual
Assignment probability

g g
in an individual
Assignment probability

i f ll l i=prob that the individual 
comes from a population

=proportion of alleles coming 
from an ancestral population



Individual assignment

Pritchard et al(2000), Falush et al(2003)
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Thank you very much
for your kind attention!


