

Australia – Japan Workshop on Data Science Keio University, 24 – 27 March 2009

Latent Class Models

Ross DARNELL

Louise MARQUART

CSIRO Mathematical and Information Sciences

- 1. Background
- 2. Data set
- 3. Model
- 4. Example
- 5. Discussion

Backgrounds

CERF project:

The Commonwealth Environment Research Facilities (CERF) Marine Biodiversity Hub prediction project analyses patterns and dynamic of marine biodiversity to determine the appropriate units and models for effectively predicting Australia's marine biodiversity.

The project administered through the Australian Government Department of the Environment, Water, Heritage and the Arts

Major contributers are: University of Tasmania; CSIRO Wealth from Oceans Flagship; Geoscience Australia; Australian Institute of Marine Science; Museum Victoria.

To construct predicting models of biodiversity (eg presence/absence, count, weight of each speceis/units) which

- show relationships with physical variables (eg);
- provide reasonable explanation to understand biology.

This presentation looks at clustering species according to their relationship with their physical environment using latent class models.

Binary outcome:

$$Y_{ij} = \begin{cases} 1 & \text{species } i \text{ present at site } j, \\ 0 & \text{species } i \text{ not present at site } j \end{cases}$$

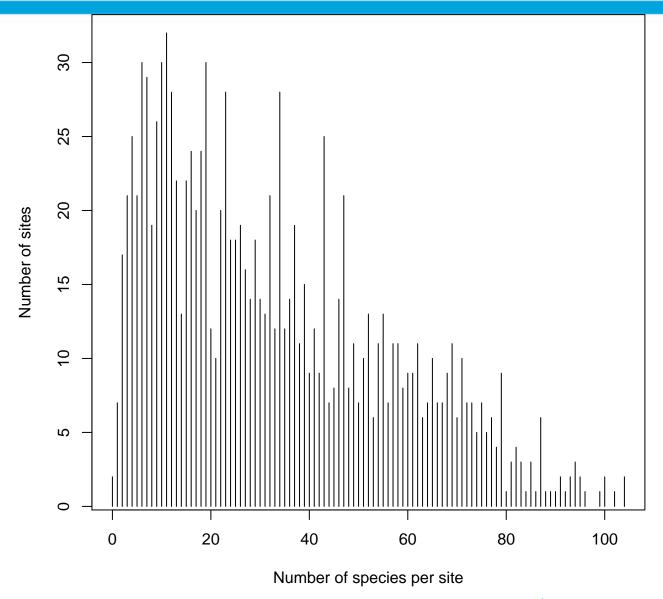
and construct

$$S_j = \sum_i Y_{ij}$$
 number of species observed at site j

$$j = 1, \dots, 1189$$

$$i = 1, \dots, 278$$

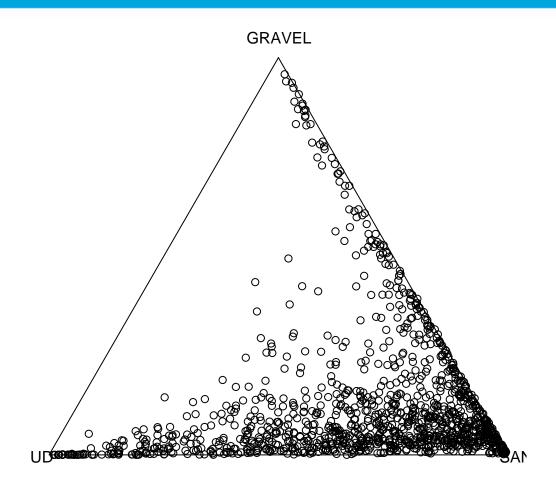
One species was observed at 838 sites. 55 species were observed at 6 sites.

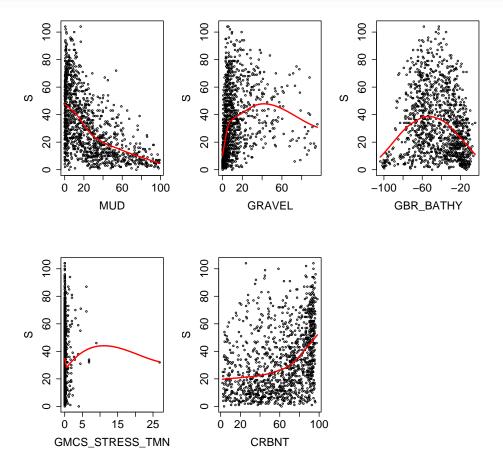


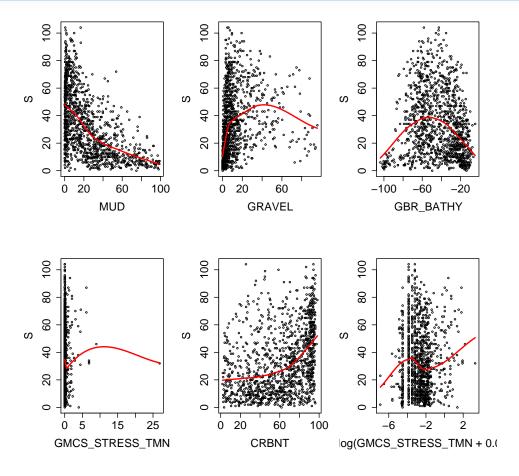
32 variables (X_l) measured at each site (j, X_{jl}) :

We would like to discuss some of these.

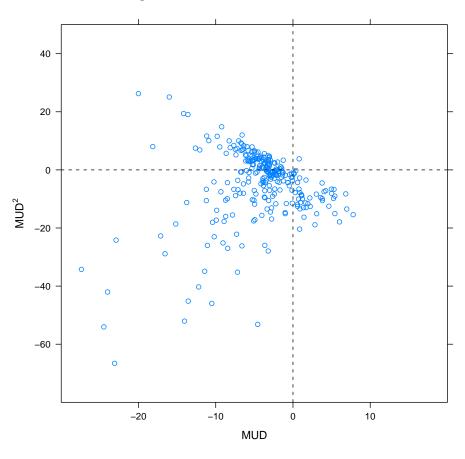
Label	Description		
GBR_BATHY	Depth of water		
${\tt GBR_TS_BSTRESS}$	Benthic stress		
CRBNT	Carbonate		
S_AV	Salinity		
GRAVEL	Percent gravel		
MUD	Percent mud		
SAND	Percent sand (dropped)		







Regression estimates for MUD model



Latent class model.

$$Y_{ij} \sim \mathtt{binomial}(1, g^{-1}(\eta_{ij}))$$

where g represents the logit link and

$$\eta_{ij} = \beta_{1i} \times \text{MUD}_j + \beta_{2i} \times \text{MUD}_j^2 + Z_i + U_i \times \text{MUD}_j + V_i \times \text{MUD}_j^2$$

Here $\beta_{1i}=\beta_1+U_i$, where U_i represents variation about a "mean" β_1 and similarly Z_i for β_0 and V_i for β_2 . Marginally Z_i , U_i and V_i have an unknown joint distribution g(z,u,v). The likelihood is

$$\mathcal{L}(\beta) = \prod_{i} \left\{ \int \left[\prod_{j} f(y_{ij} \mid z_i, u_i, v_i) \right] g(z_i, u_i, v_i) dz_i du_i dv_i \right\}.$$

- LATENT GOLD package uses a hybrid of the EM and Newton Raphson algorithm.
- Uses multiple starting points to avoid local minima
- Tend to avoid using asymptotic p value of $-2 \times \log$ -likelihood (ℓ) difference. Bootstrap samples based on model probability distribution and define p_{boot} as the proportion of bootstrap samples with a larger -2ℓ difference than original sample. Unfortunately this is very slow for datasets of this size.

Latent Gold developed by Jeroen K Vermunt and Jay Magidson

LATENT GOLD reports other statistics...

$$BIC = -2 \log \mathcal{L} + \log Nnpar,$$

$$AIC = -2 \log \mathcal{L} + 2npar,$$

$$AIC3 = -2 \log \mathcal{L} + 3npar$$

$$CAIC = -2 \log \mathcal{L} + [\log(N) + 1]npar,$$

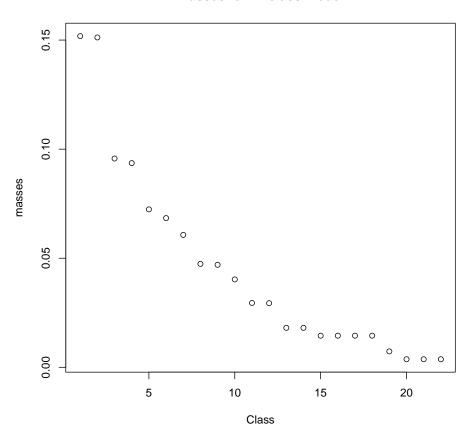
For response class k, these are

$$P(\text{Species } i \text{ belonging to class } k) = \frac{\pi_k \prod_j f_{ijk}}{\sum_l \pi_l \prod_l f_{ijl}}$$

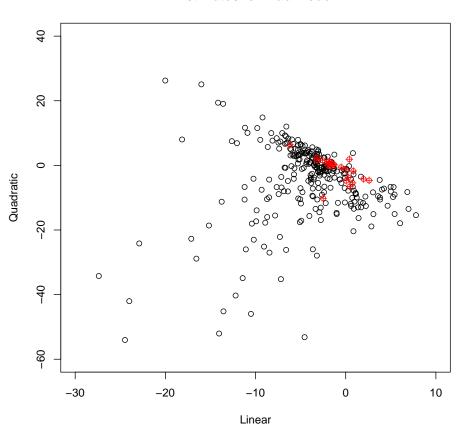
in our case f_{ijk} is the binomial density for species i at site j for class k.

K	AIC
1	232900
2	216554
3	212285
÷	:
15	204401
16	204187
17	204122
18	204028
19	203924
20	203870
21	203766
22	203668
23	203742
24	203643
25	203534

Masses for 22 class model



Estimates for mud model



species	Modal	Class1	Class2	Class3	Class4
CBMTQ.TVL192602	1	0.8817	0.0243	0.0053	0
CBMTQ.TVL192643	1	0.9949	0.0051	0	0
CBMTQ.TVL192670	1	0.9996	0.0003	0	0.0001
CBMTQ.TVL192683	1	0.9982	0.0013	0	0.0004
CBMTQ.TVL192830	1	1	0	0	0
CBMTQ.TVL192833	1	0.9851	0	0	0.0001
CBMTQ.TVL192848	1	0.9997	0	0.0001	0
CBMTQ.TVL192987	1	0.5548	0	0	0.4451
CBMTQ.TVL193079	1	0.9998	0	0	0.0002
:					
CBMTQ.TVL193617	2	0	0.9996	0	0
CBMTQ.TVL194248	2	0	1	0	0
:					
CBMTQ.TVL192932	20		1	0	0
SCQMSB.BRS194716	20		1	0	0
MSAIMT192631	21		0	1	0
MSAIMT193417	22		0	0	1

Number of species in each class

Class	# species	Class	# species
1	43	12	10
2	42	13	10
3	26	14	6
4	19	15	6
5	16	16	5
6	17	17	5
7	15	18	5
8	13	19	4
9	11	20	2
10	11	21	1
11	10	22	1

Discussion

- "Unsupervised learning" approach to clustering species according to their relationship with physical environment.
- Asymptotic results questionable
- Bootstrap methods requires large amounts of computing resources.
- Have I answered the marine biologist's question? Maybe not.
- Has the approach been useful? (data support, computer power)

Thank you for your kind attentions. Comments and suggestions are welcomed!

Ross DARNELL ross.darnell@csiro.au

Louise Marquart

